АНАЛИЗ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА НА ТЕРРИТОРИИ ЗАПОВЕДНИКА «МЫС МАРТЬЯН» И ЕГО СВЯЗЬ С ГЕОТОПОЛОГИЧЕСКИМИ ПАРАМЕТРАМИ ТЕРРИТОРИИИ

В.О. Смирнов

Крымский НЦ НАН Украины и Министерства образования и науки Украины

Одним из направлений исследования территории заповедника «Мыс Мартьян» является оценка ее ландшафтных свойств на базе геотопологической концепции, позволяющей оценивать и прогнозировать свойства геосистем.

Цель работы состоит в изучении температурного режима территории заповедника «Мыс Мартьян», его пространственной дифференциации с помощью геотопологического анализа. Это является явно актуальным вопросом при учете уникальности растительного и почвенного покрова заповедника.

Местоположение каждого элементарного ландшафта рассматривается в качестве важнейшего фактора, определяющего особенности входящих в него геокомпонентов и его физико-географические свойства. Эти особенности и свойства отличают конкретный контур от смежных с ним элементарных единиц ландшафтной дифференциации и проявляются на уровне непрерывных фоновых их изменений.

Объект и методы исследования

Исследования проведены на территории заповедника «Мыс Мартьян», расположенном на склоне ЮВ экспозиции в нижнем горном поясе южного макросклона Главной гряды Крымских гор. Высота 0-230 м н.у.м. Общая крутизна склона 15°. По протяженности склона имеется три террасовидных уступа.

Территория заповедника, находящаяся в центральной части Южного берега Крыма, представляет собой характерный по растительности участок Субсредиземноморья в Крыму. Растительность заповедника, в целом, характеризуется как лесная, и представлена двумя формациями — формацией дуба пушистого (Quercus pubescens) и формацией можжевельника высокого (Juniperus excelsa) (Ларина, 1976).

Для анализа распределения температуры были использованы материалы наблюдений на метеостанциях «Никитский Сад» и «Мартьян» (Справочник по климату СССР, 1967а, 1969), стационарные наблюдения на территории заповедника «Мыс Мартьян» в различные годы (Молчанов и др., 1976, 1977), а также работы В.В. Антюфеева (2003), В.В. Антюфеева, В.И. Важова (1979), В.В. Антюфеева, Р.Н. Казимировой (2002).

Для оценки распределения температур в различные периоды по геотопам в пределах территории заповедника «Мыс Мартьян» были составлены оценочные карты пространственной дифференциации средней годовой температуры, средней температуры июля и января и суммы активных температур.

Для этого проводилось уточнение карт изменения температур с высотой за счет использования данных о количестве поступающей суммарной солнечной радиации с учетом облачности в соответствующие периоды. Четко обозначить прямую связь температуры с поступающей солнечной радиацией невозможно. Однако, в основу климатологических исследований для определения составляющих теплового

баланса входит радиационный баланс территории и суммы поступающей радиации. При рассмотрении дифференциации температур для различных по экспозиции и крутизне склонов поступающая солнечная радиация рассматривается как один из ведущих факторов дифференциации (Микроклимат СССР, 1967, с. 89-91).

Все величины на картах суммарной радиации в соответствующие периоды были разделены на 7 равных интервалов для каждого из периодов. В данной шкале 4-й интервал значений рассматривался как центральный. В его пределах значение температур принималось равным значению, обусловленному влиянием высоты на температуру. Остальные интервалы в зависимости от расположения по отношению к центральному рассматривались как зоны увеличения или уменьшения значений температур за счет влияния поступающих сумм радиации. Интервалы обозначались зна-ками от «- - -» до «+++» в зависимости от степени изменения величин температуры.

Результаты и обсуждение

На основе произведенных расчетов и анализа отметим следующие закономерности распределения температур:

В пределах заповедника при распределении температур проявляется высотный градиент, поскольку разница между верхней и нижней точками заповедника составляет 250 м. Это дает, в среднем, около 2^{0} С, то есть территории, расположенные около трассы Ялта — Алушта, имеют примерно на 2^{0} более низкую температуру по сравнению с пляжем.

Была получена зависимость изменения средней годовой температуры воздуха, средней температуры июля, января, суммы активных температур от высоты для западной части Ялтинского горного амфитеатра (Смирнов, 2005а, 2005б) с использованием данных 7 метеостанций и метеопостов, функционировавших на данной территории в различные сроки (Справочник по климату СССР, 1967б, 1969) (рис. 1) (На основе цифровой модели рельефа построены соответствующие карты с использованием Spatial analist).

Однако в конкретные моменты времени могут быть самые разнообразные отклонения от этой величины, что связано с:

- ночными инверсиями, которые при отсутствии ярко выраженной циркуляции приводят к стоку холодного воздуха вниз по склону. В связи с этим В.В. Антюфеев (2003) отмечает относительное снижение температуры воздуха в пункте Монтодор при исследовании микрозональности температур в пределах Никитского ботанического сада;
- зимними инверсиями, связанными с распространением холодного воздуха с северо-востока при размещении центра антициклона над Средним Поволжьем. В этом случае слой воздуха мощностью 1 км не захватывает яйлы, а обтекает горы с запада и востока. В результате на яйлах температура воздуха оказывается выше по сравнению со склонами;
- бризовой циркуляцией и высотой местности, влажностью воздуха. Влияние данных факторов оценивалось при стационарных наблюдениях на различных высотах над уровнем моря (Молчанов и др., 1976, 1977; Семенов и др., 1977). Авторы отмечают максимум температур для территории заповедника на высоте 100 м н.у.м. в летние месяцы. При «продвижении» к берегу наблюдается снижение температур.
- охлаждающим влиянием весной еще не прогретого моря, из-за чего многими исследователями отмечалось наиболее раннее цветение растений на ЮБК на вы-

соте 100-150 м н.у.м, а не у моря, что подтверждается многолетними фенологическими наблюдениями на территории заповедника (Голубева, 1976);

– по многочисленным данным наблюдений и теоретических исследований (Антюфеев, 2003; Антюфеев, Важов, 1979; Идзон, 1976; Павлов, 1965; Раунер, 1960, 1962, 1965, 1972; Раунер, Ананьева, 1965; Руднев, 1965), существенное влияние имеет растительный покров. Полог леса (как фактор геотопов 2 или 3 порядка) в зависимости типа погоды существенно преобразует температурное поле как в горизонтальном, так и в вертикальном профиле. Влияние леса на формирование температурного режима достаточно разнообразно и зависит, прежде всего, от морфометрических характеристик леса.



Рис.1. Изменение средней годовой температуры воздуха в зависимости от высоты

Уравнение регрессии: Y=13,465-0,0066857X, где У – температура С°, X – высота над уровнем моря. Модель объясняет 96% изменчивости Y, Коэффициент корреляции=-0,98 Стандартная квадратичная ошибка=0,36 Средняя абсолютная ошибка=0,25 Корреляция достоверна при уровне значимости 99%

Е.Ф. Молчанов с совторами (1976) приводит данные о различиях по температуре в летние месяцы для различных растительных ассоциаций для территории заповедника «Мыс Мартьян». При этом различия между дубовым лесом с густым грабинниковым ярусом и открытой площадкой могут составлять до 1,3° (под пологом леса температура ниже). Различия между различными растительными сообществами могут составлять до 2,1°.

Имеются данные об изменении температуры в вертикальном профиле при разных типах погоды для растительных сообществ, близких по морфометрическим характеристикам, в пределах Карадагского ландшафтно-экологического стационара (Ландшафтно-экологические..., 2001). Наиболее часто встречающееся распределение температуры в вертикальном профиле следующее: наиболее высокая температура фиксируется в верхней части полога леса. Далее фиксируется сверхадиабатическое изменение температуры, а в нижнем слое сохраняется инверсия.

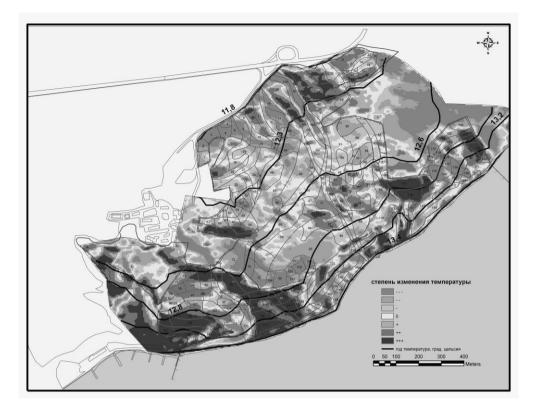


Рис. 2. Вероятное распределение средней годовой температуры

Существующих данных о связи изменения температуры и морфометрических характеристик полога леса недостаточно для оценки влияния полога леса на пространственное распределение температур по геотопам в пределах территории заповедника. Кроме того, распределение температур существенно зависит от типа погоды. Данный вопрос требует детальных полевых исследований.

Распределение температур по геотопам.

На основе полученных данных составлены соответствующие карты распределения температур по геотопам (рис. 2-5). Их анализ позволяет сделать следующие выводы о возможном пространственном распределении температур по геотопам:

1. Среднегодовые значения температуры воздуха близкие к значениям, определенным по высоте н.у.м., характерны для юго-восточных склонов крутизной 10-15°. На склонах восточной и западной экспозиции возможно уменьшение значений среднегодовой температуры. В пределах балок возможно существенное снижение температуры. При уменьшении крутизны склонов при ЮВ экспозиции до 0-5° возможно менее существенное уменьшение температуры.

Максимально возможное увеличение значения среднегодовой температуры наблюдается на южных склонах крутизной 15-30°, менее существенное увеличение возможно при более низких значениях уклона поверхности.

Распределение сумм температур за вегетационный период имеет аналогичное распределение, с возможными максимумами и минимумами.

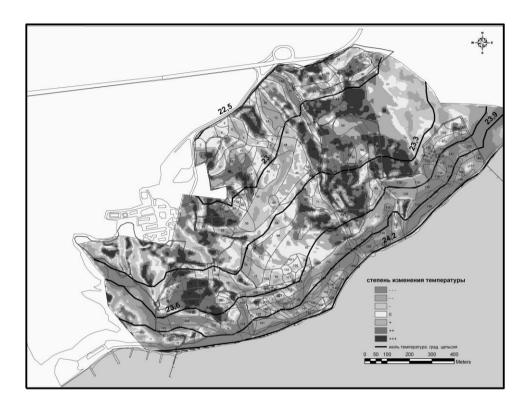


Рис. 3. Вероятное распределение средней температуры июля

- 2. Распределение средних значений температуры для июля носит иной характер. Минимально возможные средние значения температуры возможны на крутых приморских склона Ю, ЮВ, ЮЗ экспозиции крутизной 15-30°, несколько большие значения возможны при той же экспозиции, но при уменьшении крутизны до 10-15°. В днищах балок, так же как и при годовых значениях, возможны наибольшие отклонения в сторону уменьшения значения температуры. Значения, близкие к средним, наблюдаются на склонах ЮВ экспозиции при уклонах поверхности 0-5°. Максимальное возможное увеличение температур наблюдается на южных склонах с уклоном поверхности (10-15°).
- 3. Распределение температуры в январе носит иной характер. Максимальное увеличение температуры по отношению к величине, определенной по высоте, возможно в геотопах Ю экспозиции с уклоном 15-30°. Максимальное отклонение температуры в сторону уменьшения в январе на территории заповедника характерно для

ровных поверхностей или склонов с минимальными значениями уклона, а также для балок. Для склонов Ю и ЮВ экспозиции характерны средние значения.

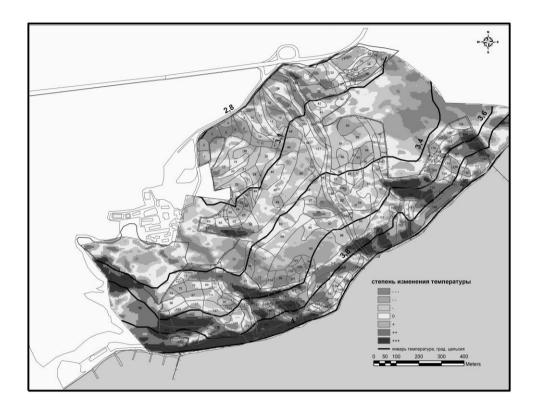


Рис. 4. Вероятное распределение средней температуры января

Выводы

Формирование температурного поля в пределах геотопов имеет очень сложный характер. Не оказывают непосредственное влияние такие геотопологические параметры, как высота над уровнем моря, экспозиция и крутизна склона. Существенное влияние оказывает растительный покров, который значительно осложняет картину распределения температур.

Кроме того, на формирование температурного режима влияют тип погоды и ветровой режим, которые частично «контролируются» геотопами более высоких пространственных уровней.

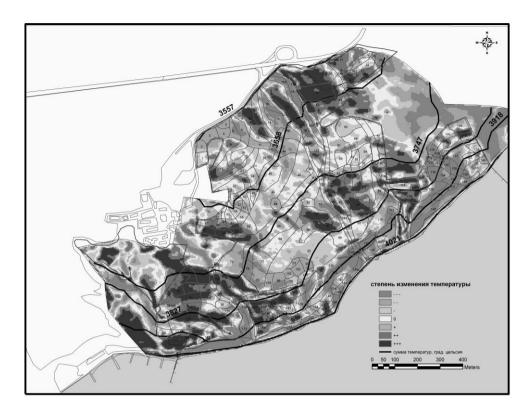


Рис. 5. Вероятное распределение суммы активных температур

Литература

- Антюфеев В.В., Важов В. И. Инсоляционные ресурсы горного Крыма и их оценка // Бюл. Гос. Никит. бот. сада. -1979. Вып. 1 (38). С. 44-48.
- Антюфеев В.В. Микроклиматическая изменчивость термических ресурсов вегетационного периода на Южном берегу Крыма // Сб. науч. трудов Гос. Никит. бот. сада. 2003. Т. 121. С. 137-145.
- Антюфеев В.В., Казимирова Р.Н. Приход солнечной радиации и водно-тепловой режим коричневой почвы на склонах в Крыму // Грунтознавство та агрохімія на шляху до сталого розвитку України: Спец. вип. «Агрохімія і грунтознавство: міжвідомчий тематич. наук. збірн.» до VI з'їзду УТГА 1–5 липня 2002 р. Харків: Нац. наук. центр "Інститут грунтознавства та агрохімії", 2002. Кн. 2. С. 6-8.
- Голубева И.В. Фенологические наблюдения // Летопись природы. Ялта, 1977. Кн $4.-\mathrm{C.}$ 7-26.
- Идзон П.Ф. Критерий водоохранной роли леса и его применение // Лесоведение. 1976. № 1. C. 18-27.

- Ландшафтно-геофизические условия произрастания лесов юго-восточной части Горного Крыма / Под редакцией В. А. Бокова. Симферополь: Таврия-Плюс, 2001. 136 с.
- Ларина Т.Г. Очерк растительности Мартьяна // Государственный заповедник «Мыс Мартьян». Летопись природы. Ялта, 1976. Кн. 1. С. 190-203.
- Микроклимат СССР: Ред. Гольцберг И. А.. Л.: Гидрометеоиздат, 1967. 286 с.
- Молчанов Е.Ф., Слоновский В.Г., Монина Л.И. Почвенно-климатический стационар // Государственный заповедник «Мыс Мартьян»: Летопись природы. Ялта, 1976. Кн. 3. С. 4-62.
- Молчанов Е.Ф., Монина Л.И., Ковальчук Ю.Д. Почвенно-климатический стационар // Государственный заповедник «Мыс Мартьян»: Летопись природы. Ялта, 1977. Кн. 4. С. 7-25.
- Павлов А.В. Тепловой баланс некоторых видов деятельной поверхности в Подмосковье // Тепловой и радиационный баланс естественной растительности и сельскохозяйственных полей. М.: Наука, 1965. С. 106-116.
- Раунер Ю.Л. Тепловой баланс леса // Известия АН СССР. Сер. География. 1960. № 1. С. 1-10.
- Раунер Ю.Л. К методике определения составляющих теплового баланса леса. Тепловой баланс леса и поля. М.: Изд-во АН СССР, 1962. С. 117-139.
- Раунер Ю.Л. К методике экспериментальных исследований теплового баланса лесных и безлесных ландшафтов // Тепловой и радиационный баланс естественной растительности и сельскохозяйственных полей. М.: Наука, 1965. С. 7-22.
- Раунер Ю.Л. Тепловой баланс растительного покрова. Л.: Гидрометеоиздат, 1972. 210 с.
- Раунер Ю.Л., Ананьева Л.М. Тепловой баланс лиственного леса и луга в весенний период // Тепловой и радиационный баланс естественной растительности и сельскохозяйственных полей. М.: Наука, 1965. С. 37-60.
- Руднев Н. И. Сезонные особенности формирования радиационного баланса смешанного леса в Подмосковье // Тепловой и радиационный баланс естественной растительности и сельскохозяйственных полей. М.: Наука, 1965. С. 60-79.
- Семенов Е.К., Андриенко Л.М., Кузовлев М.М. Режим метеорологических элементов в заповеднике «Мыс Мартьян» // Государственный заповедник «Мыс Мартьян»: Летопись природы. Ялта, 1977. Кн. 4. С. 30-70.
- Смирнов В.О. Климатические особенности произрастания лесов Ялтинского горного амфитеатра // Екологічні проблеми регіонів України. Одеса: Екологія, 2005а. С. 167-168.
- Смирнов В.О. Мезоклиматические особенности Ялтинского горного амфитеатра // Заповедники Крыма: заповедное дело, биоразнообразие, экообразование. Симферополь: ТНУ, 2005б. С. 109-113.
- Справочник по климату СССР. Вып. 10: Украинская ССР. Ч. II: Температура воздуха и почвы / Сост. М.Я. Глебова. Л.: Гидрометеоиздат, 1967а. 604 с.
- Справочник по климату СССР. Вып. 10: Украинская ССР. Ч. V: Облачность и атмосферные явления / Сост. М.Я. Глебова. – Л.: Гидрометеоиздат, 1967б. – 604 с.
- Справочник по климату СССР / Сост. М.Я. Глебова. Л.: Гидрометеоиздат, 1969. 696 с.